Coping with drought-induced xylem cavitation: coordination of embolism repair and ionic effects in three Mediterranean evergreens.
نویسندگان
چکیده
Embolism repair and ionic effects on xylem hydraulic conductance have been documented in different tree species. However, the diurnal and seasonal patterns of both phenomena and their actual role in plants' responses to drought-induced xylem cavitation have not been thoroughly investigated. This study provides experimental evidence of the ability of three Mediterranean species to maintain hydraulic function under drought stress by coordinating the refilling of xylem conduits and ion-mediated enhancement of stem hydraulic conductance (K stem). Vessel grouping indices and starch content in vessel-associated parenchyma cells were quantified to verify eventual correlations with ionic effects and refilling, respectively. Experiments were performed on stems of Ceratonia siliqua L., Olea europaea L. and Laurus nobilis L. Seasonal, ion-mediated changes in K stem (ΔK stem) and diurnal and/or seasonal embolism repair were recorded for all three species, although with different temporal patterns. Field measurements of leaf specific stem hydraulic conductivity showed that it remained quite constant during the year, despite changes in the levels of embolism. Starch content in vessel-associated parenchyma cells changed on diurnal and seasonal scales in L. nobilis and O. europaea but not in C. siliqua. Values of ΔK stem were significantly correlated with vessel multiple fraction values (the ratio of grouped vessels to total number of vessels). Our data suggest that the regulation of xylem water transport in Mediterranean plants relies on a close integration between xylem refilling and ionic effects. These functional traits apparently play important roles in plants' responses to drought-induced xylem cavitation.
منابع مشابه
Xylem cavitation caused by drought and freezing stress in four co-occurring Juniperus species
doi: 10.1111/j.1399-3054.2006.00644.x Previous studies indicate that conifers are vulnerable to cavitation induced by drought but in many cases, not by freezing. Rarely have vulnerability to drought and freezing stress been studied together, even though both influence plant physiology and the abundance and distribution of plants in many regions of the world. We studied vulnerability to droughta...
متن کاملXylem function and growth rate interact to determine recovery rates after exposure to extreme water deficit.
• Motivated by the urgent need to understand how water stress-induced embolism limits the survival and recovery of plants during drought, the linkage between water-stress tolerance and xylem cavitation resistance was examined in one of the world's most drought resistant conifer genera, Callitris. • Four species were subjected to drought treatments of -5, -8 and -10 MPa for a period of 3-4 wk, a...
متن کاملCavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem.
Although cavitation and refilling cycles could be common in plants, it is unknown whether these cycles weaken the cavitation resistance of xylem. Stem or petiole segments were tested for cavitation resistance before and after a controlled cavitation-refilling cycle. Cavitation was induced by centrifugation, air drying of shoots, or soil drought. Except for droughted plants, material was not sig...
متن کاملVulnerability of Xylem to Cavitation and Embolism
WATER RELATIONS AND THE VULNERABLE PIPELINE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 EARLY EFFORTS TO DETECT CAVITATION AND EMBOLISM . . . . . . . . . . . . . . . . . . . . . 21 ACOUSTIC DETECTION OF CAVITATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Audio (Low-Frequency) Detection . . . . . . . . . . . . . . . ....
متن کاملXylem embolism alleviated by ion-mediated increase in hydraulic conductivity of functional xylem: insights from field measurements.
Recent studies have shown that, in some species, xylem hydraulic conductivity (K(h)) increases with increasing cation concentration of xylem sap. Evidence indicates that K(h) increases as a result of the de-swelling of pit membrane pectins caused by cation neutralization of polygalacturonanes. We tested whether this ionic effect partly compensates for the embolism-induced loss of stem hydraulic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tree physiology
دوره 34 2 شماره
صفحات -
تاریخ انتشار 2014